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Abstract

We introduce a new model for radiative transfer equations where low energy groups are treated in the diffusion

approximation whereas high energy groups are solution of the classical transport equation. This enables to extend the

range of validity of usual Implicit Monte-Carlo techniques which behave poorly in regions characterized by a small

mean free path. We show that Fleck�s numerical scheme [J. Comput. Phys. 8 (1971) 313] is not adapted to this modeling
and we present an application of Symbolic Monte-Carlo. Properties of the Monte-Carlo matrix are discussed and

numerical results are presented.
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1. Introduction

When matter is brought to very high temperature, energy transported by radiation cannot be neglected.

It is then necessary, when describing fluid motion, to take into account the exchange of energy between

matter and a photon gas propagating at the speed of light: these are the radiation hydrodynamics equation

[9]. In simplest models, photons are supposed to be at local thermodynamic equilibrium: their distribution
function is a Planck�s function taken at the temperature of matter. In the most general cases equilibrium
hypothesis must be removed and the equation describing time evolution of the distribution of photons is an

integro-differential transport equation strongly coupled to the matter energy equation. In the absence of

fluid motion and neglecting Compton scattering and considering matter in local thermodynamical

equilibrium, it writes as
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otIm þ c~XX � rIm þ crm Im

�
� BmðT Þ

4p

�
¼ 0;

otEðT Þ þ
Z Z

rm
BmðT Þ
4p

�
� Im

�
dmd~XX ¼ 0;

ð1Þ

where radiative intensity Im depends on frequency m, direction ~XX, space position x and time t. c is the speed of
light, rm the emission–absorption opacity, T is the matter temperature, EðT Þ is the internal energy and the
Planck�s function BmðT Þ is given by

BmðT Þ ¼
2hm3

c2
1

expðhm=kT Þ � 1 :

Despite the rapid progress of deterministic algorithms (see [1] for a recent contribution), Monte-Carlo
methods are still very popular for solving radiative transfer equations. This is especially the case for 2D and

3D problems because the number of unknowns becomes rapidly prohibitive. Moreover, knowing exactly the

full distribution function Iðm; ~XX; x; tÞ is often of little interest and we would prefer to compute accurately the
absorbed energy, i.e.,

R R
rmImdmd~XX: this can be seen as an integration on a three-dimensional space and

Monte-Carlo methods are known to be competitive against deterministic methods for such problems.

On the other hand, whereas deterministic methods can be designed for treating at the same time regions

with small and large mean free path, Monte-Carlo methods suffer from severe drawbacks when used in

optically thick media because statistics usually become very poor. One of the solutions to overcome this
difficulty is to introduce a hybrid formulation of radiative transport equations and to solve a diffusion

equation where diffusion approximation is valid (see [5] for a recent review). One of the issues we have to

address if we want to use this approach is the location of the boundary between transport and diffusion

formulations. First, it has to be changing in time when temperature evolves because the mean free path is

usually an increasing function of temperature: some material which is initially optically thick can become

optically thin.Moreover, when using a spectral discretization a new problem appears: becausemean free path

is also usually an increasing function of frequency, low frequencies must be treated in the diffusion ap-

proximation whereas high frequency photons are far from equilibrium and require a transport description.
The purpose of this paper is to present a new hybrid formulation of radiative transfer equations based on

the following idea: given some criterion on the mean free path, we can divide the population of photons at a

given position into two families (one equilibrium family and one out of equilibrium) and solve for each family

either a diffusion equation or a transport equation. This will enable to obtain automatically the diffusion limit

seeked by deterministic methods provided that the given criterion has some physical content and to keep the

advantages of Monte-Carlo methods with respect to computational cost.

The paper is organized as follows: in the next section, we introduce the notion of spectral cut-off and the

new modeling of the transfer equations. In Section 3, we describe the numerical scheme based on symbolic
Monte-Carlo method. In particular, we will make precise the numerical implementation of the generalized

Marshak condition that arises at the interface between two regions whose cutting frequencies are different.

In Section 4, we prove that the linear system constructed during the Monte-Carlo step is invertible. At last,

we will present an application to a test case described in [8] which consists in computing the propagation of

a Marshak wave with two energy groups, one optically thick and one optically thin and we conclude by

discussing some computational issues.

2. Modeling

In order to numerically solve Eqs. (1), we introduce a spectral discretization. We define K energy groups
ðmk; mkþ1Þ and the variables
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Ik ¼
Z mkþ1

mk

Im dm; BmðT Þ ¼
Z mkþ1

mk

BmðT Þdm:

Throughout the paper, we shall use only the Planck mean for opacities

rkðT Þ ¼
Z mkþ1

mk

rmðT ÞBmðT Þdm
�Z mkþ1

mk

BmðT Þdm:

We shall also denote by bk the reduced Planck�s function bkðT Þ ¼ BkðT Þ=ðaT 4Þ. Because all of the features of
the model are already there in the linear case, for the sake of simplicity, we shall assume that bk and rk do

not depend of temperature and that the equation of state is linear with respect to HM ¼ aT 4. Taking into
account the non-linearities leads to the use of standard Newton�s techniques for handling non-linear
equations but does not change our analysis. To simplify notations, we make a change of physical units so

that speed of light c is set to 1 and EðT Þ � HM . We thus obtain

otIk þ ~XX � rIk þ rk Ik

�
� bk
4p

HM

�
¼ 0;

otHM þ
XK
k¼1

Z
rk

bk
4p

HM

�
� Ik

�
d~XX ¼ 0;

ð2Þ

with appropriate boundary conditions and initial values.

It is well known (see [7]) that when mean free path is small in front of some typical length scale, then P1

approximation is valid and radiative intensity can be approximated as

Ikð~XXÞ ¼ Ek

4p
þ 3

4p
~XX �~FFk; ð3Þ

where radiative energy Ek and radiative flux ~FFk are the zeroth and first order moments of radiative intensity
Ik and do not depend on direction of propagation ~XX. Furthermore, when thermal equilibrium is achieved

(i.e., when temperature is slowly varying over many mean free paths) one gets simple formulas for these

quantities

Ek ¼ bkHM ; ~FFk ¼ � bk
3rk

rHM :

In some cases, radiative intensity is a Planckian function at some other temperature than HM : for example,

in an optically thin medium illuminated by a black body. So, for the sake of generality, we shall assume

that:

Ek ¼ bkHT ; ~FFk ¼ � bk
3rk

rHT ð4Þ

with some temperature HT which can differ from HM . So a way to obtain the diffusion limit for (2) is to use

approximation (3) and (4) when possible. This can depend on which energy group we are considering. As

mean free path is usually a growing function of energy, approximation (3) and (4) can be valid for low

energy groups and not for high energy groups.

These remarks lead us to the introduction of two auxiliary variables:

• TT ðx; tÞ the thermalization temperature (we shall actually use HT ¼ aT 4T ).
• mkcðx;tÞ the spectral cut-off (mkcðx;tÞ is one of the discrete frequencies fm1; . . . ; mKg which define the spectral
discretization).
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These variables are such that:

for k6 kcðx; tÞ; Ikð~XXÞ ¼ bk
4p

HT �
bk
4prk

~XX � rHT ;

for k > kcðx; tÞ; Ikð~XXÞ is solution of the transport equation:
ð5Þ

In other words, for k6 kcðx; tÞ, we consider that spectral distribution of radiation field is at equilibrium, i.e.,
it is represented by a Planck�s function but at some thermalization temperature TT which can differ from
matter temperature. For k > kcðx; tÞ, photons are out of equilibrium and their distribution function is found
by solving the transport equation. An example of such distribution is displayed in Fig. 1: the spectral cut-off

is set to 3.5 (arbitrary units) with HM > HT . Of course, the assumption that Ik is Planckian for k6 kc is a
strong assumption because it means that all groups of energy are coupled at low frequency. This is not the
case for example in the multigroup diffusion model. We shall come back to this remark later on.

Let us assume for a while that kcðx; tÞ does not depend on space and time. If we put approximation (5)
into the transport equation and integrate with respect to angle, we get for k6 kc

bkotHT þ rkbkðHT � HMÞ ¼
Z

~XX � r bk
4prk

~XX � rHT

� �
¼ div bk

3rk
rHT

� �
:

Adding these kc equalities we obtain the following diffusion equation for the thermalization temperature

aotHT þ rEðHT � HMÞ ¼ div
1

3rD
rHT

� �
; ð6Þ

with

a ¼
Xkc
k¼1

bk; rE ¼
Xkc
k¼1

rkbk;
1

rD
¼
Xkc
k¼1

bk
rk

:

Let us introduce also the total absorption opacity rT ¼
PK

k¼1 rkbk.
For k > kc, Ik is solution of the transport equation

otIk þ ~XX � rIk þ rk Ik

�
� bk
4p

HM

�
¼ 0 ð7Þ

Fig. 1. Modeling of the spectrum as a function of frequency (arbitrary units).
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and conservation of energy is written as

otHM þ rTHM � rEHT �
XK

k¼kcþ1
rk

Z
Ikð~XXÞd~XX ¼ 0: ð8Þ

Radiative energy is just defined by

aT 4R � HR ¼ aHT þ
XK

k¼kcþ1

Z
Ikð~XXÞd~XX

and we can easily check that total energy HR þ HT is conserved.

Consider now the more general situation where kcðx; tÞ depends on position x but not on time t. It means
that we have transport–diffusion interfaces located at discontinuities of the discrete function x 7! kcðx; tÞ.
The general situation is represented in Fig. 2. We must now describe the boundary conditions for system

(6)–(8) at such an interface C. We denote by indices L and R the functions at the left and at the right side of
interface C and~nn the vector normal to C oriented from left to right. We suppose that kR > kL so there are
fewer groups of energy at equilibrium on the left side. The continuity conditions are:

(i) For k > kR, we write continuity of radiative intensity

Ikðx; ~XX; tÞjCL ¼ Ikðx; ~XX; tÞjCR : ð9Þ

(ii) For k6 kL, we write continuity of net fluxes

1

rD
rHT

� �
jCL

�~nn ¼ 1

rD
rHT

� �
jCR

�~nn ð10Þ

with

1

rD
CL

¼
XkL
k¼1

bk
rLk

;
1

rD
CR

¼
XkL
k¼1

bk
rRk

:

Fig. 2. Transport–diffusion interface.

J.-F. Clou€eet, G. Samba / Journal of Computational Physics 188 (2003) 139–156 143



(iii) For kL < k6 kR we use the Marshak condition (see [9])

XkR
k¼kLþ1

Z
~XX�~nn>0

ð~XX �~nnÞ bk
4p

HT

�
� bk
4prk

~XX � rHR
T

�
jCR
d~XX ¼

XkR
k¼kLþ1

Z
~XX�~nn>0

ð~XX �~nnÞIkð~XXÞjCL d~XX:

Integrating with respect to angles this writes as

aC

4
HT

�
� 1

6rIC
~nn � rHT

�
jCR

¼
XkR

k¼kLþ1

Z
~XX�~nn>0

ð~XX �~nnÞIkð~XXÞjCL d~XX ð11Þ

with

aC ¼
XkR

k¼kLþ1
bk;

1

rIC
¼
XkR

k¼kLþ1

bk
rRk

: ð12Þ

We can now describe the behavior of the model as kcðx; tÞ evolves in time: it is simply determined by the
conservation of radiative energy. Suppose that at a given location x0, the function t 7! kcðx0; tÞ has a dis-
continuity at time t0 and denote by k� and kþ the values before and after t0.
(i) If kþ > k�, some energy groups which were initially out of equilibrium achieve equilibrium at some new
thermalization temperature Hþ

T given by

Xkþ
k¼1

bk

 !
Hþ

T ¼
Xk�
k¼1

bk

 !
H�

T þ
Xkþ

k¼k�þ1

Z
Ikðx0; ~XX; t0Þd~XX:

(ii) If kþ < k�, the thermalization temperature remains unchanged and the transport equation is solved for
groups kþ þ 1; . . . ; k� with initial values

Ikðx0; ~XX; tþ0 Þ ¼
bk
4p

H�
T � bk

4prk

~XX � rH�
T :

There are many ways to properly define the spectral cut-off mkcðx;tÞ such that P1 approximation (3) holds
true. Of course some restrictions have to be imposed so that problem is well posed. In particular, for the
transport–diffusion conditions it is necessary to define vectors ~nn normal to surfaces kcðx; tÞ ¼ constant:
these interfaces must be at least piecewise C1 surfaces. But apart from these ‘‘obvious’’ consider-

ations, any local criteria based on the ratio between the spectral mean free path and some char-

acteristic macroscopic length is a good candidate for defining mkcðx;tÞ. We will give some examples in
Section 5.

From a numerical point of view, we could consider the case where P1 approximation stands for some

groups k1; . . . ; kj which are not necessarily contiguous. Extension of discontinuity conditions is

straightforward but we will not consider this case because there is no physical reason for which these
groups of energy would be represented by a Planckian function at the same temperature. It would be

preferable to use a hybrid method with transport equations coupled to a system of diffusion equations

for each thermalized group instead of a single gray diffusion equation over a fraction of the whole

spectrum.
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3. Numerical scheme

The system which has to be solved numerically is composed of one diffusion equation (6), one transport

equation (7) and one ordinary differential equation (8). These equations are coupled through terms on the

right-hand side and through continuity conditions (9)–(11) which occur at the discontinuities of the

function kcðx; tÞ. Of course the most expensive step of the algorithm will consist in solving the transport

equation and as said in Section 1, we want to restrict ourselves to Monte-Carlo method for this step. It is

well known that implicit time discretization is necessary for solving radiative transfer when the matter and
the photon gas are strongly coupled which is our case. So, we must choose an implicit Monte-Carlo

method. There are two families of Monte-Carlo methods for radiative transfer equations:

1. Implicit Monte-Carlo (IMC) methods based on the seminal work of Fleck and Cumming [4]. These are

predictor–corrector techniques: the energy equation provides a prediction of the temperature at the end

of the time-step as a function of radiative intensity. Transport equation is then solved with this temper-

ature as a source term. Finally, knowing the energy deposit, energy equation is exactly solved.

2. Symbolic Monte-Carlo (SMC) methods (see [2,6]) which consists in solving symbolically the transport

equation, the source term being replaced by indicatrix functions, and then solve the energy balance equa-
tion (see below for further details).

It turns out that IMC is not well adapted for solving (6)–(8) and we would rather use SMC. The reason is

the following. If we use the predictor–corrector technique then the source term that has to be used in the

transport equation comes from integration of the energy balance equation over one time-step:

~HHM ¼ aH0
M þ bHT þ

X
k>kc

Z
ckIkð~XXÞd~XX;

where a, b and ðckÞk>kc are some constants which only depend on opacity and time-step and H0
M is the value

of the matter temperature at the beginning of the time-step. But it is not possible to use this prediction for

the source term because it involves the solution HT of diffusion equation (6) at the end of the time-step. It

would then be necessary to get a prediction of HT which is not easy because of diffusion operator. In order

to have a local prediction, we can either treat the diffusion operator in an explicit way and obtain an es-

timate of the form

~HHM ¼ aH0
M þ b0H

0
T þ b1 div

1

3rD
rH0

T

� �
þ
X
k>kc

Z
ckIkð~XXÞd~XX;

or neglect it and obtain an estimate of the form

~HHM ¼ aH0
M þ bH0

T þ
X
k>kc

Z
ckIkð~XXÞd~XX:

But neither of these choices can be justified in the general case so IMC is not a good candidate for solving

the whole system. In the sequel, we shall show that it is much easier to use SMC.
In the next section, we recall the principles of SMC method applied to radiative transfer equations. Then

we show how this applies to the system without transport–diffusion interfaces. At last, we describe the

numerical scheme in the most general case where function x 7! kcðx; tÞ is discontinuous.

3.1. Principles of Symbolic Monte-Carlo method

We recall briefly the main feature of the method and we refer to [6] for further details. For this section

only, we will only consider a gray model problem consisting in one single transport equation
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otI þ ~XX � rI þ rI ¼ rU; Ijt¼0 ¼ I0 ð13Þ

coupled with the energy balance equation

otU þ r 4pU

�
�
Z

I d~XX
�

¼ 0; Ujt¼0 ¼ U0:

As Eq. (13) is linear, we can write I ¼ Iexp þ I imp where functions Iexp and I imp are solution of

otI exp þ ~XX � rIexp þ rI exp ¼ 0; Iexpjt¼0 ¼ I0;

otI imp þ ~XX � rI imp þ rI imp ¼ rU; I impjt¼0 ¼ 0:

In the equation for Iexp the source term is explicit (it is zero) whereas it is implicit in the equation for I imp.
Introducing the semi-group of linear operators Tt ¼ e�tð~XX�rþrÞ, we have:

Iexp ¼ TtI0; I imp ¼
Z t

0

Tt�sðrUÞds:

The key point is to notice that, after space discretization, the discrete version of these linear operators are

matrices which can be estimated by a Monte-Carlo method. More precisely, let us denote by niðxÞ the
indicatrix function of some cell i such that UðxÞ ¼

P
i UiniðxÞ and rðxÞ ¼

P
i riniðxÞ then we have

I impðx; ~XX; tÞ ¼
P

i Uiviðx; ~XX; tÞ where function vi is solution of the transport equation

otvi þ ~XX � rvi þ rvi ¼ rini: ð14Þ

Using this formula in the energy balance equation one gets

otU þ 4prU ¼ r
Z X

i

Uivið~XXÞ
 

þ Iexp
!
d~XX:

using an implicit time discretization and integrating over a cell j of volume Vj and time interval ðt; t þ DtÞ,
we obtain

VjðUj � U0
j Þ þ 4pDtrjUjVj �

Z tþDt

t
ds
Z
d~XXrj

Z
Vj

dx
X
i

Uiviðx; ~XX; sÞ
 

þ Iexpðx; ~XX; sÞ
!

¼ 0;

which can be rewritten as

Vjð1þ 4pDtrjÞUj þ
X
i

Mj;iUi ¼ Sj ð15Þ

with

Sj ¼ VjU0
j þ rj

Z tþDt

t
ds
Z
d~XX
Z
Vj

dx I expðx; ~XX; sÞ;

Mj;i ¼ rj

Z tþDt

t
ds
Z
d~XX
Z
Vj

dxviðx; ~XX; sÞ:

So SMC method consists in solving transport equations for vi (14) with source term an indicatrix function.
We take a census of deposited energy and compute a matrix ~MM whose elements ~MMj;i have Mi;j as mathe-
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matical expectation. In the sequel, we will use the same notation for ~MM and M which we call the Monte-

Carlo matrix. The Monte-Carlo particles that are used for this computation are called symbolic particles

because they sample an indicatrix function: we must keep their originating cell all through the tracking and

their initial weight is just a factor of proportionality to the emission energy U. Other non-symbolic particles
are also tracked which correspond to the initial value problem without source term for Iexp. Second step of
the method consists in solving the linear system (15).

3.2. Numerical scheme without transport–diffusion interfaces

We now come to the system of equations (6)–(8) and we first consider the case where kcðx; tÞ is a constant
function. For sake of simplicity, we will study the space discretization on a 1D regular mesh with cell size

denoted by h because the choice for the spatial scheme for the diffusion operator is not an issue (we simply
take a finite difference approximation of second order derivatives). For more complicated geometries (e.g.,

distorted multidimensional meshes) the situation is different.

We integrate Eqs. (6) and (8) over time-step ðt; t þ DtÞ. Denoting with indices 0 values of the unknowns
at the beginning of the time-step and using implicit time discretization, we get

aðHT � H0
T Þ þ DtrEðHT � HMÞ ¼ Dtdiv

1

3rD
rHT

� �
;

HM � H0
M þ DtrTHM ¼ DtrEHT þ

Z tþDt

t
ds

XK
k¼kcþ1

rk

Z
Ikð~XXÞd~XX:

ð16Þ

Let us introduce now spatial discretization: HM and HT become vectors of size n and the SMC method
enables us to compute an n� n matrix M such thatZ tþDt

t
ds

XK
k¼kcþ1

rk

Z
Ikð~XXÞd~XX ¼ S þMHM : ð17Þ

On the other hand, using finite differences for the diffusion operator leads to the following approximation:

Dtdiv
1

3rD
rHT

� �
¼ DHT ; ð18Þ

whereD is a tridiagonal matrix (we impose symmetric boundary conditions). Putting together (16)–(18) and
denoting by Id the n� n identity matrix we obtain, in matrix form

A
HT

HM


 �
¼ aH0

T

H0
M þ S


 �
; ð19Þ

where the 2n� 2n Monte-Carlo matrix A is just

A ¼ ða þ DtrEÞId �D �DtrEId
�DtrEId ð1þ DtrTÞId �M


 �
: ð20Þ

3.3. Numerical scheme with transport–diffusion interfaces

We now describe the modifications to this scheme when there is a discontinuity in the function kcðx; tÞ.
Using time discretization, kcðx; tÞ is computed at the beginning of the time-step. As explained in the
previous section, we take into account the change in time of kcðx; tÞ by using conservation of energy:
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(i) If kþ < k�, Monte-Carlo particles are created whose weight is just the change of energy

ð
Pk�

k¼kþþ1 bkÞH0
T .

(ii) If kþ > k�, Monte-Carlo particles whose energy group is in the interval ðk� þ 1; kþÞ are killed. The sum
of their weights represents some energy E which is reintroduced in the thermalized part by solving the
equation

Xkþ
k¼1

bk

 !
Hþ

T ¼
Xk�
k¼1

bk

 !
H�

T þ E:

We shall now discretize the boundary conditions at an interface C where kcðx; tÞ is discontinuous.
Using space discretization C is now the interface between two cells L and R (we use the same notations
as in Fig. 2).

(i) For k > kR, continuity of radiative intensity is a direct consequence of the tracking of Monte-Carlo
particles whose energy group is higher than kT through C.

(ii) For k6 kL, we discretize the continuity of fluxes (10)

FL ¼ HC
T � HL

T

rD
CL
h

¼ HR
T � HC

T

rD
CR
h

¼ FR: ð21Þ

We can eliminate the temperature at the interface HC
T in (21) and we get

FL ¼ FR ¼ HR
T � HL

T

rD
CL

þ rD
CR

� 

h
: ð22Þ

(iii) For kL < k6 kR, we use Brockway�s discretization of Marshak condition (11) (see [10]) which writes in
our case

XkR
k¼kLþ1

ðF þ
k þ F �

k Þ ¼ aC

2
HC

T ;

XkR
k¼kLþ1

ðF þ
k � F �

k Þ ¼ HR
T � HC

T

3rICh
;

ð23Þ

where aC and rIC have been defined in (12) and F �
k and F þ

k are the fluxes entering and leaving the left cell

at interface C.
After simple algebraic manipulations, we can eliminate in (23) the temperature at the interface HC

T and

obtain a relation between fluxes and temperature in the right diffusion cell HR
T :

XkR
k¼kLþ1

F þ
k ¼ ð1� fÞ

XkR
k¼kLþ1

F �
k þ faC

4
HR

T ; ð24Þ

with

f ¼ 4

3rIChaC þ 2 :

We recover the expression given in [10] when aC ¼ 1 which corresponds to the case of the ‘‘full’’ transport–
diffusion interface kL ¼ 0 and kR ¼ K.

148 J.-F. Clou€eet, G. Samba / Journal of Computational Physics 188 (2003) 139–156



Relation (24) must be interpreted in terms of events for the tracking of Monte-Carlo particles. The

term ð1� fÞ
PkR

k¼kLþ1 F
�
k corresponds to a reflection of particles at the transport–diffusion interface with

attenuation of statistical weight by the factor ð1� fÞ. Consequently, the corresponding loss of weight is
deposited in the right diffusion cell. The term faC

4
HR

T multiplied by the time-step Dt corresponds to an
energy emission from the diffusion cell into the Monte-Carlo region. Of course, only particles with

energy group between kL þ 1 and kR are affected. This will change the structure of linear system

(19).

We must distinguish between symbolic particles whose initial weight is proportional to HM and which
corresponds to the volume source term in (7) and symbolic particles whose initial weight is proportional

to HT and which corresponds to the emission of energy at transport–diffusion interfaces in (24). On the

other hand, we must also distinguish between energy deposited at transport–diffusion interfaces and

energy deposited through absorption in Monte-Carlo cells. In Monte-Carlo cells, energy deposit (17)

becomes

Z tþDt

t
ds

XK
k¼kcþ1

rk

Z
Ikð~XXÞd~XX ¼ SM þMM

MHM þMM
T HT ;

and at transport–diffusion interfaces, energy deposit writes as

Z tþDt

t
ds

XkR
k¼kLþ1

div
bk
3rk

rHT

� �
¼ ST þMT

MHM þMT
THT ;

where MM
M, M

M
T , M

T
M and MT

T are Monte-Carlo matrices. Finally, the space discretization of diffusion

operator for the thermalization temperature HT is simply derived from (22):

Dt
XkL
k¼1
div

bk
3rk

rHT

� �
¼ DHT :

We rewrite now the final linear system (19) in the general case

A
HT

HM


 �
¼ aH0

T þ ST

H0
M þ SM


 �
; ð25Þ

where the Monte-Carlo matrix A is just

A ¼ a þ DtrE þ Dt faC
4

� �
Id �D�MT

T �DtrEId �MT
M

�DtrEId �MM
T 1þ DtrTð ÞId �MM

M


 �
: ð26Þ

4. Properties of the Monte-Carlo matrix

In this section, we shall prove that the 2n� 2nmatrixA given by (26) is strictly diagonally dominant and

thus invertible.

For this purpose, we prove that the two following n� n matrices obtained by adding extra-diagonal sub-
matrices of A to the diagonal sub-matrices are themselves diagonally dominant:
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AT ¼ a

�
þ DtrE þ Dt

faC

4

�
Id �D�MT

T � DtrEId �MM
T

¼ a

�
þ Dt

faC

4

�
Id �D�MT

T �MM
T ; ð27Þ

AM ¼ 1
�

þ DtrT
�
Id �MM

M � DtrEId �MT
M

¼ 1
�

þ DtðrT � rEÞ
�
Id �MM

M �MT
M:

Let us first considerAM .MM
M is the Monte-Carlo matrix which represents the energy deposited through

absorption of symbolic Monte-Carlo particles sampling the volume emission term and MT
M is the Monte-

Carlo matrix which represents the energy deposited through attenuation at transport–diffusion interfaces of

the same population of particles. On the other hand DtðrT � rEÞId represents the volume emission term. So
on column j, the matrix term ðMM

M þMT
MÞi;j is the energy absorbed on cell j from symbolic particles coming

from cell i and DtðrT � rEÞ is just the energy of these particles. As absorbed energy cannot be greater than
emitted energy we necessarily haveX

j

ðMM
M þMT

MÞi;j 6DtðrT � rEÞ;

which implies that AM is strictly diagonally dominant.

The argument is similar for matrixAT.MM
T andMT

T represents energy deposited, respectively, through

absorption in Monte-Carlo cells and attenuation at transport–diffusion interfaces. The symbolic particles

are now those which have been emitted at transport–diffusion interfaces and the total energy emitted is just
DtðfaC=4Þ.
Hence DtðfaC=4ÞId �MM

T �MT
T is diagonally dominant. �D is also diagonally dominant (it is a tridi-

agonal matrix coming from the spatial discretization of a diffusion operator). Taking into account the term

coming from the time derivative aId , we conclude that A
T is strictly diagonally dominant.

We have seen that Monte-Carlo matrix A is strictly diagonally dominant: this implies that it is in-

vertible.

We end this section by studying the behavior ofA in the two limiting cases where mean free path is very

small or very large. If the spectral cut-off is adequately chosen it means that either kcðx; tÞ � 0 or
kcðx; tÞ � K. In the first case, we get:

Ar!1 � ða þ DtrTÞId �D �DtrTId
�DtrTId ð1þ DtrTÞId


 �

and we recover a grey diffusion problem. In the second case, we obtain

Ar!0 �
0 0

0 ð1þ DtrTÞId �MM
M


 �
;

that is, we recover standard SMC matrix (see [6]).

5. Numerical results

In this section, we show the behavior of the model on a benchmark, proposed by Olson and Su [8].

It consists in solving the radiative transfer equations in a one-dimensional infinite and homogeneous

medium. The number of frequency groups is set to two and the corresponding opacities r1 and r2 are
constant. A frequency uniformly distributed radiative source term is localized near the origin. Moreover,
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since the material specific heat is assumed to be proportional to the cube of the material temperature, the

problem is linear and it is possible to compute the exact solution by performing a Laplace transform in time

and a Fourier transform in space.

The system writes as

otIk þ ~XX � rIk þ rk Ik

�
� bk
4p

HM

�
¼ bk
4p

Iðjxj < 0:5ÞIðt < 10Þ

otHM þ
X2
k¼1

Z
rk

bk
4p

HM

�
� Ik

�
d~XX ¼ 0; k ¼ 1; 2;

where I denotes the indicatrix function. The reduced Planck�s function does not depend on the temperature
b1 ¼ b2 ¼ 1=2 and we have r1 ¼ 200=101, r2 ¼ 2=101 so that the arithmetic mean of opacities b1r1 þ b2r2 is
equal to 1. At last, initial conditions is Ikðx; ~XX; 0Þ ¼ HMðx; 0Þ ¼ 0 and boundary condition is

limx 7! �1 Ikðx; ~XX; tÞ ¼ 0 for all time t.
The source term is localized for jxj < 0:5 and 06 t < 10 so we discretize the problem using a regular

mesh of 3000 cells over the space interval ð0; 30Þ with reflecting boundary condition on x ¼ 0 and zero
incoming flux at x ¼ 30: this reproduces the exact boundary condition since no photon reaches the right
boundary at t ¼ 10, the end time of the simulation.
The size of each cell (0.01) is smaller than the mean free path for each frequency (101=200 and 101=2)

which allows us to use the transport description for both frequencies. The initial null temperature is ap-

proximated by a temperature of 10�4. The initial time-step is 3� 10�4, the maximum time-step is 3� 10�2.
The results in [8] are given in terms of

U1ðx; tÞ ¼
Z

I1ðx; ~XX; tÞd~XX; U2ðx; tÞ ¼
Z

I2ðx; ~XX; tÞd~XX:

We denote UTRANS ¼ U1 þ U2, VTRANS ¼ HM , U1TRAN ¼ U1 and U2TRAN ¼ U2 the solutions gi-
ven by Fourier–Laplace transforms and UCALC ¼ U1 þ U2, VCALC ¼ HM , U1CALC ¼ U1 and

U2CALC ¼ U2 the solutions given by various numerical experiments. We present the results of three such
computations (all figures represent energies as a function of space in the x-axis):

Fig. 3. Case 1: exact and hybrid transport (lowest group in diffusion) solution at t ¼ 10.
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Case 1. The spectral cut-off kc is set to 1, so the first frequency group is solved in the diffusion ap-
proximation and the second in the transport description.

The difference between U1CALC and U1TRAN (Fig. 4) near the origin suggests that the diffusion

approximation for the first group is not valid: U1CALC is too small near 0 and too high after 0.5. Due to

the strong coupling between the matter and the photons for the frequency 1, the material energy VCALC

has the same behavior (Fig. 3). In contrast, the result for the second group is quite satisfactory.

The reason of this discrepancy is that the size of the source is of the same order (0.5) as the mean free

path in the first the frequency group (101/200). It is well known that in a boundary layer of some mean free
paths near the source, the diffusion approximation is no longer valid [7].

Fig. 4. Case 1: exact and hybrid transport (lowest group in diffusion) solution at t ¼ 10.

Fig. 5. Case 2: exact and hybrid transport (lowest group in diffusion for x > 2) solution at t ¼ 10.
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Case 2. To improve the treatment of the first frequency group, in this second calculation, it is only

partially treated in the diffusion approximation: the spectral cut-off kc is now set to 0 for x < 2 and to 1 for
x > 2 so the first frequency group is solved in the transport description for x < 2 and in the diffusion ap-
proximation for x > 2. The second frequency group is still described by the transport equation.
We see (Figs. 5 and 6) that in this case the agreement between the calculated and the exact solutions is

very satisfactory (see Fig. 7).

Case 3. In this third calculation, we solve the full transport equations for both frequencies which is

feasible because the mean free paths for the both frequencies are smaller than the cell size. This is done by
setting the spectral cut-off to 0 everywhere. The agreement between the calculated and the exact solutions is

also good but we notice oscillations in the material energy VCALC (Fig. 8) which are clearly due to the

Monte-Carlo treatment of the first frequency group.

Fig. 6. Case 2: exact and hybrid transport (lowest group in diffusion for x > 2) solution at t ¼ 10.

Fig. 7. Case 3: exact and full transport solution at t ¼ 10.
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So provided that the spectral cut-off is adequately chosen, the method gives correct results. We can now

discuss its precision: it will be done in next section.

6. Computational issues

A complete analysis of the benefits of this method compared to IMC method is beyond the scope of this

paper and should be strongly dependent on the application. We will however discuss the accuracy of the
method on previous benchmark. We have computed a figure of merit for Hybrid SMC (case 2) and Full

SMC (case 3) methods. The figure of merit at time t and position x is defined by:

FOMðx; tÞ ¼ hðHMðx; tÞ � hHMðx; tÞiÞ2i � CPUcost;

where h�i denotes average over many computations. Actually, we only used an approximation of this
quantity by computing for only one realization

FOMðx; tÞ ¼ 1

2�

Z xþ�

x��

ðHMðy; tÞ � HMðy; tÞÞ2 dy � CPUcost;

where � is a small parameter and HMðy; tÞ is a linear approximation of HMðy; tÞ on ðx� �; xþ �Þ. By
changing the number of Monte-Carlo particles emitted at each time-step, we have computed the figure of

merit at time t ¼ 10 for various positions x (� was taken equal to 0.07):
• For a given number of emitted particles, the CPUcost are comparable for Hybrid SMC (case 2) and Full

SMC: Hybrid SMC is approximatively 15% more expensive than Full SMC because of the extra Monte-

Carlo events at the boundary between transport and diffusion regions.

• When x6 2, the full transport equations are solved for both frequencies in SMC and Hybrid SMC. For a
given number of emitted particles the variance is comparable so the figure of merit of Full SMC is

slightly better than that of Hybrid SMC (Fig. 9).

• When xP 2, the lowest group is treated in the diffusion approximation in Hybrid SMC. There are sev-

eral orders of magnitude between the variance of both methods (Fig. 10).

Fig. 8. Case 3: exact and full transport solution at t ¼ 10.
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Hence, in this case, Hybrid SMC is efficient for reducing random noise far from the location of the
source term.

In the general case, the situation is of course completely different, according to the optical thickness of

the medium. In an optically thin medium, we recover Full SMC and the method behave similarly (the extra

cost for Hybrid SMC being small). In an optically thick medium, we recover the diffusion limit, i.e., we only

solve a diffusion equation with finite differences method. In this case Full SMC behaves poorly [3] so

Hybrid SMC is a simple way to improve SMC for this kind of problems.

For purpose of comparison with IMC method, we should compare the computational cost of tracking

symbolic particles and inverting the linear system with the computational cost of Fleck�s collision and
random walk events: it will depend on time-step, opacity and mesh size. If the medium is optically thin, the

methods behave similarly; if the medium is optically thick Hybrid SMC is more efficient because it is

equivalent to diffusion approximation solved by finite differences instead of random walk. In the inter-

mediate case, we cannot conclude in full generality: there may be a need for specific benchmark.

One of the questions which arise about SMC methods (Full and Hybrid) is the storage of Monte-Carlo

matrix and the cost of the inversion of the linear system. First, we point out the fact that there is no extra

computational cost due to the multi-group discretization in Hybrid SMC because we took a grey

Fig. 10. Variance (arbitrary unit) as a function of CPUcost (in second) at x ¼ 4:5, t ¼ 10 for Full SMC and Hybrid SMC.

Fig. 9. Variance (arbitrary unit) as a function of CPUcost (in second) at x ¼ 1:5, t ¼ 10 for Full SMC and Hybrid SMC.
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approximation for the low energy groups. From a practical point of view, inverting the linear system re-

quires an iterative solver for non-symmetric matrices when the number of cells becomes large. One of the

drawback of the method is that A can possibly become a non-sparse matrix. It is easy to see that, for a

given column j the number of non-zero terms is equal to the number of cells visited by particles issued from
cell j which is bounded by Dt=h or rather cðDt=hÞ with c the speed of light (remember that we had previously
set c to one). In radiation hydrodynamics computations, the time-step is usually constrained by a CFL
condition which writes as csðDt=hÞ6 1 where cs is the speed of sound waves. So we see that the number of
non-zero terms is only bounded by c=cs which is very large. However, we notice that, when opacity is large,
particles are absorbed very close to their originating cell so that the number of cells is small and, when

opacity is small, particles can travel very far without being absorbed so that the number of cells may be-

comes large but on the other hand the whole matrixA becomes strongly diagonally dominant so there is no

problem with the inversion of the linear system (problems arise rather from memory storage). We will not

argue anymore on this aspect but we have to keep in mind that this can be an issue for the method especially

in multidimensional problems.

7. Conclusions

In this paper we have described a new hybrid method to solve the radiative transfer equations. We

introduced the notion of spectral cut-off which enables to split the spectrum into two parts, the lower part

which corresponds to optically thick frequencies is treated in the diffusion approximation whereas the

higher part which corresponds to optically thin frequencies is described by the full transport equation. We

have seen that Symbolic Monte-Carlo is particularly well adapted to such a modeling. We have also

provided numerical tests which show the relevance of this approach on frequency-dependent problems.
This aspect was rarely tackled in previous works.

One of the interest of the method is that the diffusion limit is automatically obtained if we are able to set

a criterion to say when (in time) and where (in space and frequency) the transport equation can be ap-

proximated by the diffusion model. This can be an issue if a local criterion is not adequate. Such a criterion

should be based on a comparison between the spectral mean free path and the gradient length of some

quantity like the temperature. One should also take into account the time of absorption for this frequency

compared to some time scale. In practice, a criterion which takes into account the optical depth of the cell

should always be adequate because it is possible to track Monte-Carlo particles with a good accuracy if the
cells are optically thin. However this criterion could overestimate the need for a transport description and

lead to too costly simulations. The determination of a good criterion in the general case is currently under

work.
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